مدل یابی معادلات ساختاری یادگیری سیار براساس خودکارآمدی و یادگیری خودتنظیمی با نقش واسطه‌ای مهارت‌های فناوری اطلاعات و ارتباطات

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری روانشناسی تربیتی، دانشکده علوم انسانی، واحد سنندج، دانشگاه آزاد اسلامی، سنندج، ایران

2 استادیار، گروه روانشناسی، دانشکده علوم انسانی، واحد سنندج، دانشگاه آزاد اسلامی، سنندج، ایران

3 استادیار، گروه روانشناسی، دانشکده علوم انسانی، واحد بابل، دانشگاه آزاد اسلامی، بابل، ایران

10.22084/j.psychogy.2025.31265.2814

چکیده

هدف: هدف از انجام این پژوهش تعیین کفایت پیش‌بینی مدل یادگیری سیار براساس خودکارآمدی و یادگیری خودتنظیمی با نقش واسطه‌ای مهارت‌های فناوری اطلاعات و ارتباطات بود.
روش: پژوهش حاضر همبستگی و از نوع مدل معادلات ساختاری بود. جامعه آماری شامل کلیه دانش آموزان دختر دوره دوم متوسطه شهر تهران که به روش نمونه‌گیری تصادفی خوشه‌ای چندمرحله‌ای 386 نفر به‌عنوان نمونه انتخاب شدند. جهت گردآوری داده‌ها از پرسشنامه خودکارآمدی تلفن همراه کامپیو و هیگینز (1995)، مقیاس نگرش‌های یادگیری سیار آل‌عمران و همکاران (2016)، یادگیری خودتنظیمی آنلاین بارنارد و همکاران (2009) و مهارت‌های فناوری اطلاعات و ارتباطات ویلکینسون، رابرتز، وایل (2010) استفاده شد. تجزیه‌وتحلیل داده‌ها از طریق مدل معادلات ساختاری و نرم‌افزار spss و pls انجام شد.
یافته‌ها: براساس نتایج به‌دست‌آمده خودکارآمدی تلفن همراه بر یادگیری سیار تأثیر مثبت و معناداری داشت (0.001>p). مهارت‌های فناوری اطلاعات و ارتباطات بر یادگیری سیار تأثیر مثبت و معناداری داشت (0.001>p). یادگیری خودتنظیمی بر یادگیری سیار تأثیر مثبت و معناداری داشت (0.001>p). براساس نتایج به‌دست‌آمده تأثیر واسطه‌ای مهارت‌های فناوری اطلاعات و ارتباطات در رابطه خودکارآمدی تلفن همراه بر یادگیری سیار تائید نشد (0.001<p).
نتیجه‌گیری: براساس نتایج می توان نتیجه گیری کرد که ارتقای باورهای فردی، مهارت‌های فنی و توانایی تنظیم‌گری فراگیران، مستقیماً منجر به بهبود فرآیند یادگیری سیار می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Structural Equation Modeling of Mobile Learning Based on Self-Efficacy and Self-Regulated Learning with the Mediating Role of ICT Skills

نویسندگان [English]

  • Elahehsadat Hamidi 1
  • Ata Shakerian 2
  • Jamal Sadeghi 3
1 PhD student in Educational Psychology, Faculty of human science, Sa. C., Islamic Azad University, Sanandaj, Iran
2 Assistant Professor, Department of Psychology, Faculty of human science, Sa. C., Islamic Azad University, Sanandaj, Iran
3 Assistant Professor, Department of Psychology, Faculty of human science, Bab. C., Islamic Azad University, Babol, Iran
چکیده [English]

Objective: The purpose of this study was to determine the predictive adequacy of a mobile learning model based on self-efficacy and self-regulated learning, with the mediating role of Information and Communication Technology (ICT) skills.
Methods: The present study was descriptive-correlational using Structural Equation Modeling (SEM). The statistical population comprised all female upper secondary school students in Tehran, of whom 386 were selected via multi-stage cluster random sampling. Data collection instruments included the Mobile Phone Self-Efficacy Questionnaire (Compeau & Higgins, 1995), Mobile Learning Attitudes Scale (Al-Emran et al., 2016), Online Self-Regulated Learning Questionnaire (Barnard et al., 2009), and ICT Skills Questionnaire (Wilkinson, Roberts, & While, 2010). Data analysis was performed using SEM via SPSS and SmartPLS software.
Results: The results indicated that mobile phone self-efficacy had a positive and significant effect on mobile learning (p<0.001). ICT skills had a positive and significant effect on mobile learning (p<0.001). Self-regulated learning also had a positive and significant effect on mobile learning (p<0.001). However, the mediating role of ICT skills in the relationship between mobile phone self-efficacy and mobile learning was not confirmed (p>0.001).
Conclusions: Based on the results, it can be concluded that enhancing individual beliefs, technical skills, and the self-regulatory abilities of learners directly leads to the improvement of the mobile learning process.
 

کلیدواژه‌ها [English]

  • Mobile Learning Model
  • Self-efficacy
  • Self-regulated Learning
  • ICT Skills
Achterkamp, R., Hermens, H. J., & Vollenbroek-Hutten, M. M. R. (2016). The influence of vicarious experience provided through mobile technology on self-efficacy when learning new tasks. Computers in Human Behavior, 62, 327-332. https://doi.org/10.1016/j.chb.2016.04.006
Al Kurdi, B. Al, Alshurideh, M., Salloum, S. A., Obeidat, Z. M., & Al-dweeri, R. M. (2020). An empirical investigation into examination of factors influencing university students" behavior towards elearning acceptance using SEM approach. International Journal of Interactive Mobile Technologies, 23, 19-41. https://doi.org/10.3991/ijim.v14i02.11115
Al-Emran, M., Elsherif, H. M., & Shaalan, K. (2016). Investigating attitudes towards the use of mobile learning in higher education. Computers in Human behavior, 56, 93-102.‏
https://doi.org/10.1016/j.chb.2015.11.033
Alshurideh, M., Salloum, S. A., Al Kurdi, B., & Al-Emran, M. (2019). Factors affecting the social networks acceptance: an empirical study using PLS-SEM approach. In Proceedings of the 2019 8th International Conference on Software and Computer Applications (pp. 414-418).‏
https://doi.org/10.1145/3316615.3316720
Alzaza, N. S., & Yaakub, A. R. (2011). Students" Awareness and Requirements of Mobile Learning Services in the Higher Education Environment. American Journal of Economics and Business Administration, 3(1), 95-100. https://doi.org/10.3844/ajebasp.2011.95.100
Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Prentice-Hall.
Bandura, A. (1997). Self-efficacy: The exercise of control. New York: Freeman.
Barnard, L., Lan, W. Y., To, Y. M., Paton, V. O., & Lai, S. L. (2009). Measuring self-regulation in online and blended learning environments. The Internet and Higher Education, 12, 1-6. https://doi.org/10.1016/j.iheduc.2008.10.005
Barnard, L., Paton, V.O., & Lan, W. Y. (2008). Online self-regulatory learning behaviors as a mediator in the relationship between online course perceptions with achievement. International Review of Research in Open and Distance Learning, 9(2), 1-11. https://doi.org/10.19173/irrodl.v9i2.516
Baydas, O., & Goktas, Y. (2017). A model for preservice teachers" intentions to use ICT in future lessons. Interactive Learning Environments. https://doi.org/10.1080/10494820.2016.1232277
Cázares, A. (2010). Proficiency and attitudes toward information technologies' use in psychology undergraduates. Computers in Human Behavior, 26(5), 1004-1008. https://doi.org/10.1016/j.chb.2010.02.015
Chang, W. H., Liu, Y. C., & Huang, T. H. (2017). Perceptions of learning effectiveness in M-learning: scale development and student awareness. Journal of Computer Assisted Learning, 33(5), 461-472. https://doi.org/10.1111/jcal.12192
Compeau, D. R., & Higgins, C. A. (1995). Computer self-efficacy: development of a measure and initial test. MIS Quarterly, 19(2), 189-211. https://doi.org/10.2307/249688
Crompton, H. (2013). A historical overview of mobile learning: Toward learner-centered education, in Z. L. Berge and L. Y. Muilenburg (Eds.), Handbook of mobile learning (pp. 3-14). Florence, KY: Routledge.
Dahri, N. A., Al-Rahmi, W. M., Almogren, A. S., Yahaya, N., Vighio, M. S., Al-maatuok, Q., ... & Al-Adwan, A. S. (2023). Acceptance of Mobile Learning Technology by Teachers: Influencing Mobile Self-Efficacy and 21st-Century Skills-Based Training. Sustainability, 15(11), 8514.‏ https://doi.org/10.3390/su15118514
Deci, E. L., & Ryan, R. M. (2000). The what and why of goal pursuits: Human needs and the self-determination of behavior. Psychological Inquiry, 11(4), 227-268. https://doi.org/10.1207/S15327965PLI1104_01
Hamm, S., Saltsman, G., Jones, B., Baldridge, S., & Perkins, S. (2013). A Mobile Pedagogy Approach for Transforming Learners and Faculty. In Zane Berge, & Lin Muilenburg (Eds.), Handbook of mobile education. New York, NY: Routledge.
Hasan, B., & Ahmed, M. U. (2010). A path analysis of the impact of application-specific perceptions of computer self-efficacy and anxiety on technology acceptance. Journal of Organizational and End User Computing, 22(3), 82-95. https://doi.org/10.4018/joeuc.2010070105
Hockley, N. (2013). Technology for the language Teacher - mobile learning. ELT Journal, (67)1,80-84. Retrieved from. https://doi.org/10.1093/elt/ccs064
Jeno, L. M., Vandvik, V., Eliassen, S., & Grytnes, J. A. (2019). Testing the novelty effect of an m-learning tool on internalization and achievement: A Self-Determination Theory approach. Computers and Education. https://doi.org/10.1016/j.compedu.2018.10.008
Mahat, J., Ayub, A. F., Luan, S., & Wong. (2012). An Assessment of Students' Mobile Self-Efficacy, Readiness and Personal Innovativeness towards Mobile Learning in Higher Education in Malaysia. Procedia - Social and Behavioral Sciences, 64, 284-290.
https://doi.org/10.1016/j.sbspro.2012.11.033
Menekse, M., Anwar, S., & Purzer, S. (2018). Self-efficacy and mobile learning technologies: A case study of CourseMIRROR. Self-Efficacy in instructional technology contexts, 57-74.‏
https://doi.org/10.1007/978-3-319-99858-9_4
Nikolopoulou, K., Gialamas, V., Lavidas, K., & Komis, V. (2021). Teachers' readiness to adopt mobile learning in classrooms: A study in Greece. Technology, Knowledge and Learning, 26(1), 53-77.‏ https://doi.org/10.1007/s10758-020-09453-7
Nikou, S. A., & Economides, A. A. (2017). Mobile-Based Assessment: Integrating acceptance and motivational factors into a combined model of Self-Determination Theory and Technology Acceptance. Computers in Human Behavior. https://doi.org/10.1016/j.chb.2016.11.020
Palalas, A., & Wark, N. (2020). The relationship between mobile learning and self-regulated learning: A systematic review. Australasian Journal of Educational Technology, 36(4), 151-172. https://doi.org/10.14742/ajet.5650
Salloum, S. A., Alshurideh, M., Elnagar, A., & Shaalan, K. (2020). Machine Learning and Deep Learning Techniques for Cybersecurity: A Review. In Joint European- US Workshop on Applications of Invariance in Computer Vision (pp. 50-57). Springer, Cham.‏
https://doi.org/10.1007/978-3-030-44289-7_5
Sharples, M., Taylor, J., & Vavoula, G. (2005). Towards a theory of mobile learning. Proceedings of mLearn 2005 Conference, Cape Town.
Topkaya, E. Z. (2010). Pre-service English language teachers' perceptions of computer self-efficacy and general self-efficacy. The Turkish Online Journal of Educational Technology, 9(1), 143-156.
Wilkinson, A., Roberts, J., & While, A. E. (2010). Construction of an instrument to measure student information and communication technology skills, experience and attitudes to e-learning. Computers in Human Behavior, 26(6), 1369-1376. https://doi.org/10.1016/j.chb.2010.04.010
Yorganci, S. (2017). Investigating Students' Self-Efficacy and Attitudes towards the Use of Mobile Learning. Journal of Education and practice, 8(6), 181-185.‏
Zimmerman, B. J., & Schunk, D. H. (2001). Reflections on theories, identities, and actions of self-regulated learners. In B. J. Zimmerman, & D. H. Schunk (Eds.), Self-regulated learning and academic achievement: Theoretical perspectives (pp. 289-307). Mahwah, NJ: Erlbaum.