سنجش درک فراگیران از مدل‌های‌ مفهومی و رابطه آن با مهارت استدلال علّی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه علوم تربیتی، دانشگاه شهید چمران اهواز، اهواز، ایران

2 دانشجوی دکتری تخصصی یادگیری الکترونیکی در آموزش پزشکی، گروه آموزش الکترونیکی در علوم پزشکی، دانشگاه علوم پزشکی شیراز، شیراز، ایران

3 کارشناس ارشد تحقیقات آموزشی، دانشگاه شهید چمران اهواز، اهواز، ایران

چکیده

هدف: استدلال‌های مبتنی بر مدل مانند استدلال علّی از مهم‌ترین مهارت‌های شناختی شاگردان در درس علوم است، هرچند روش‌های تدریس مبتنی بر مدل به‌ویژه مدل‌های رایانه‌ای بر استدلال و تفکر تأثیر مثبت دارند، اما آشنایی و درک از مدل نیز می‌تواند در کاربست و سودمندی آن تأثیرگذار باشد. هدف این پژوهش تعیین رابطه بین فهم شاگردان از مدل و مدل‌سازی علمی و میزان مهارت استدلال علّی آنان است. این رابطه هنگام انجام مدل‌سازی دو کانونی با موضوع حرکت‌شناسی بررسی شد.
روش: نمونه‌ای 85 نفری (در دسترس) از شاگردان دوره دوم متوسطه اهواز انتخاب و از آن‌ها خواسته شد حین مدل‌‌سازی به چهار سؤال مرتبط با حرکت‌شناسی به‌طور تشریحی پاسخ داده و استدلال خود را بنویسند. برای پاسخ‌ها ابتدا کد تعریف شد و براساس کدها، نمره‌گذاری شدند. پس از مدل‌سازی، شاگردان به پرسشنامه درک از مدل پاسخ دادند و بر اساس آن و به کمک تحلیل خوشه‌ای به دو دسته درک مطلوب از مدل و درک خام از مدل طبقه‌بندی شدند.
یافته­ها: یافته‌ها نشان داد شاگردانی که درک مطلوبی از مدل و فرآیند مدل‌سازی داشته‌اند، به‌جز در بعد شناسایی عناصر استدلال که همه عملکرد مشابهی داشتند، در سایر ابعاد استدلال علّی نسبت به شاگردانی که درک خام از مدل‌ها داشتند، موفق‌تر عمل کردند.
نتیجه­گیری:  پژوهش‌گران توجه بیشتر برنامه‌های درسی رسمی به مدل‌سازی علمی، و آگاه‌سازی معلمان نسبت به ماهیت مدل‌ها، و تشویق آنان برای تدریس مبتنی بر مدل در کلاس را بر بهبود درک فراگیر از مدل‌ مؤثر دانسته و آن را موجب تقویت مهارت‌های شناختی مثل تفکر، از جمله استدلال علّی می‌دانند. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Assessing Learners' Understanding of Conceptual Models and its Relationship with Causal Reasoning Skills

نویسندگان [English]

  • Mojtaba Jahanifar 1
  • Bahareh Ghavami Hosein Pour 2
  • Fateme Dehghani 3
1 Assistant Professor, Department of Education, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
2 Ph. D student of E-learning in Medical Sciences, Department of E-learning in Medical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
3 M.Sc. in Educational Research, Shahid Chamran University of Ahvaz, Ahvaz, Iran
چکیده [English]

Objective: Model-based reasoning, such as causal reasoning, is one of the most important cognitive skills in science education, although model-based teaching, especially computer models, have a positive effect on reasoning, but model understanding can also affect its application and usefulness. The purpose of this research is to investigate the relationship between students' models' understanding and the level of causal reasoning skills.
Method: This relationship was investigated when performing bifocal modeling with the subject of mechanics. A sample of 85 secondary high school students in Ahvaz was selected, and were asked to answer four questions related to mechanic descriptively during modeling and write their reasoning. Codes were first defined and answers were scored based on the codes.
Results: After modeling, the students answered the model understanding questionnaire and based on that, with the cluster analysis, they were classified into two categories: "model ideal understanding" and "model raw understanding". The findings showed that the students who had a good understanding of the model and the modeling process, except in the reasoning identifying the elements, which all performed similarly, were more successful in other dimensions of causal reasoning than the students who had a raw model understanding
Conclusion:  Researchers have found that paying more attention to scientific modeling in official curricula, informing teachers about the models' nature, and encouraging them to teach based on models in the classroom are effective in improving students' models' understanding, and it strengthens thinking, including scientific reasoning.

کلیدواژه‌ها [English]

  • Science Education
  • Modeling
  • Bifocal Models
  • Nature of Models
  • Causal Reasoning
Anderson, L. W., & Bloom, B. S. (2014). A taxonomy for learning, teaching, and assessing : a revision of Bloom’s. In TA - TT - (Pearson ne). Pearson. https://doi.org/ LK - https://worldcat.org/title/864384105
Blikstein, P., Fuhrmann, T., & Salehi, S. (2016). Using the Bifocal Modeling Framework to Resolve “Discrepant Events” Between Physical Experiments and Virtual Models in Biology. Journal of Science Education and Technology, 25(4), 513-526. https://doi.org/10.1007/s10956-016-9623-7
Bolger, M. S., Osness, J. B., Gouvea, J. S., & Cooper, A. C. (2021). Supporting Scientific Practice through Model-Based Inquiry: A Students’-Eye View of Grappling with Data, Uncertainty, and Community in a Laboratory Experience. CBE—Life Sciences Education, 20(4), ar59. https://doi.org/10.1187/cbe.21-05-0128
Burgin, S. R., Oramous, J., Kaminski, M., Stocker, L., & Moradi, M. (2018). High school biology students use of visual molecular dynamics as an authentic tool for learning about modeling as a professional scientific practice. Biochemistry and Molecular Biology Education, 46(3), 230-236. https://doi.org/10.1002/bmb.21113
Celebi, M. E., Kingravi, H. A., & Vela, P. A. (2013). A comparative study of efficient initialization methods for the k-means clustering algorithm. Expert Systems with Applications, 40(1), 200-210. https://doi.org/10.1016/j.eswa.2012.07.021
Chiu, M.-H., & Lin, J.-W. (2019). Modeling competence in science education. Disciplinary and Interdisciplinary Science Education Research, 1(1), 12. https://doi.org/10.1186/s43031-019-0012-y
Crawford, B. A., & Cullin, M. J. (2004). Supporting prospective teachers’ conceptions of modelling in science. International Journal of Science Education, 26(11), 1379-1401. https://doi.org/10.1080/09500690410001673775
De Andrade, V., Shwartz, Y., Freire, S., & Baptista, M. (2022). Students’ mechanistic reasoning in practice: Enabling functions of drawing, gestures and talk. Science Education, 106(1), 199-225. https://doi.org/10.1002/sce.21685
Fortus, D., Shwartz, Y., & Rosenfeld, S. (2016). High School Students’ Meta-Modeling Knowledge. Research in Science Education, 46(6), 787-810. https://doi.org/10.1007/s11165-015-9480-z
Fuhrmann, T., Schneider, B., & Blikstein, P. (2018). Should students design or interact with models? Using the Bifocal Modelling Framework to investigate model construction in high school science. International Journal of Science Education, 40(8), 867-893. https://doi.org/10.1080/09500693.2018.1453175
Hofer, B. K. (2001). Personal Epistemology Research: Implications for Learning and Teaching. Educational Psychology Review, 13(4), 353-383. https://doi.org/10.1023/A:1011965830686
Hofer, S. I., Schumacher, R., & Rubin, H. (2017). The test of basic Mechanics Conceptual Understanding (bMCU): using Rasch analysis to develop and evaluate an efficient multiple choice test on Newton’s mechanics. International Journal of STEM Education, 4(1), 18. https://doi.org/10.1186/s40594-017-0080-5
Huang, S., Kang, Z., Xu, Z., & Liu, Q. (2021). Robust deep k-means: An effective and simple method for data clustering. Pattern Recognition, 117, 107996. https://doi.org/10.1016/j.patcog.2021.107996
Ikotun, A. M., Ezugwu, A. E., Abualigah, L., Abuhaija, B., & Heming, J. (2023). K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data. Information Sciences, 622, 178–210. https://doi.org/10.1016/j.ins.2022.11.139
Inkinen, J., Klager, C., Juuti, K., Schneider, B., Salmela-Aro, K., Krajcik, J., & Lavonen, J. (2020). High school students’ situational engagement associated with scientific practices in designed science learning situations. Science Education, 104(4), 667-692. https://doi.org/https://doi.org/10.1002/sce.21570
Iseki, H. (2020). Cohen’s kappa statistics as a convenient means to identify accurate SARS-CoV-2 rapid antibody tests. MedRxiv, 2020.06.13.20130070. https://doi.org/10.1101/2020.06.13.20130070
Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31(8), 651-666. https://doi.org/10.1016/j.patrec.2009.09.011
Jansen, S., Knippels, M.-C. P. J., & van Joolingen, W. R. (2019). Assessing students’ understanding of models of biological processes: a revised framework. International Journal of Science Education, 41(8), 981-994. https://doi.org/10.1080/09500693.2019.1582821
Jarecki, J. B., Tan, J. H., & Jenny, M. A. (2020). A framework for building cognitive process models. Psychonomic Bulletin & Review, 27(6), 1218-1229. https://doi.org/10.3758/s13423-020-01747-2
Jimenez-Liso, M. R., Bellocchi, A., Martinez-Chico, M., & Lopez-Gay, R. (2022). A Model-Based Inquiry Sequence as a Heuristic to Evaluate Students’ Emotional, Behavioural, and Cognitive Engagement. Research in Science Education, 52(4), 1313-1334. https://doi.org/10.1007/s11165-021-10010-0
Jimenez-Liso, M. R., Martinez-Chico, M., Avraamidou, L., & López-Gay Lucio-Villegas, R. (2021). Scientific practices in teacher education: the interplay of sense, sensors, and emotions. Research in Science & Technological Education, 39(1), 44-67. https://doi.org/10.1080/02635143.2019.1647158
Jordan, R., Crall, A., Hmelo-Silver, C., Gray, S., Greg, N., & Sorensen, A. (2018). Developing Model-Building as a Scientific Practice in Collaborative Citizen Science. Natural Sciences Education, 47. https://doi.org/10.4195/nse2018.07.0013
Kang, H., Thompson, J., & Windschitl, M. (2014). Creating Opportunities for Students to Show What They Know: The Role of Scaffolding in Assessment Tasks. Science Education, 98. https://doi.org/10.1002/sce.21123
Kim, M. C., Hannafin, M. J., & Bryan, L. A. (2007). Technology-enhanced inquiry tools in science education: An emerging pedagogical framework for classroom practice. Science Education, 91(6), 1010-1030. https://doi.org/https://doi.org/10.1002/sce.20219
Kind, P. E. R., & Osborne, J. (2017). Styles of Scientific Reasoning: A Cultural Rationale for Science Education?. Science Education, 101(1), 8-31. https://doi.org/https://doi.org/10.1002/sce.21251
Krell, M., Reinisch, B., & Krüger, D. (2015). Analyzing Students’ Understanding of Models and Modeling Referring to the Disciplines Biology, Chemistry, and Physics. Research in Science Education, 45(3), 367-393. https://doi.org/10.1007/s11165-014-9427-9
Krist, C., Schwarz, C. V, & Reiser, B. J. (2019). Identifying Essential Epistemic Heuristics for Guiding Mechanistic Reasoning in Science Learning. Journal of the Learning Sciences, 28(2), 160-205. https://doi.org/10.1080/10508406.2018.1510404
Lazenby, K., & Becker, N. M. (2021). Evaluation of the students’ understanding of models in science (SUMS) for use in undergraduate chemistry. Chemistry Education Research and Practice., 22(1), 62-76. https://doi.org/10.1039/D0RP00084A
Lehrer, R., & Schauble, L. (2015). The Development of Scientific Thinking. In Handbook of Child Psychology and Developmental Science (pp. 1–44). https://doi.org/https://doi.org/10.1002/9781118963418.childpsy216
Mashahizade, H. (2023) Assessment the level of elementary school teachers' model and modeling understanding in science education [Unpublished master’s thesis]. Shahid chamran University of Ahvaz, Ahvaz, Iran.
National Research Council. (2012). A framework for K–12 science education: Practices crosscutting concepts, and core ideas. National Academies Press.
NGSS Lead States. (2013). Next generation science standards: For states, by states. Washington, DC: National Academies Press.
Nguyen, H., & Santagata, R. (2021). Impact of computer modeling on learning and teaching systems thinking. Journal of Research in Science Teaching, 58(5), 661-688. https://doi.org/10.1002/tea.21674
Nielsen, S. S., & Nielsen, J. A. (2021). A Competence-Oriented Approach to Models and Modelling in Lower Secondary Science Education: Practices and Rationales Among Danish Teachers. Research in Science Education, 51(2), 565-593. https://doi.org/10.1007/s11165-019-09900-1
Nimon, K., Henson, R., & Gates, M. (2010). Revisiting Interpretation of Canonical Correlation Analysis: A Tutorial and Demonstration of Canonical Commonality Analysis. Multivariate Behavioral Research - MULTIVARIATE BEHAV RES, 45, 702-724. https://doi.org/10.1080/00273171.2010.498293
Pituch, K. A., & Stevens, J. (2016). Applied multivariate statistics for the social sciences. In TA - TT - (Sixth edit). Routledge. https://doi.org/LK-https://worldcat.org/title/952863240
Prezenski, S., Brechmann, A., Wolff, S., & Russwinkel, N. (2017). A Cognitive Modeling Approach to Strategy Formation in Dynamic Decision Making. Frontiers in Psychology, 8. https://doi.org/10.3389/fpsyg.2017.01335
Rosenberg, J., & Lawson, M. (2019). An Investigation of Students’ Use of a Computational Science Simulation in an Online High School Physics Class. Education Sciences, 9(49), 1-19. https://doi.org/10.3390/educsci9010049
Samon, S., & Levy, S. T. (2021). The Role of Physical and Computer-Based Experiences in Learning Science Using a Complex Systems Approach. Science & Education, 30(3), 717-753. https://doi.org/10.1007/s11191-020-00184-w
Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Achér, A., Fortus, D., Shwartz, Y., Hug, B., & Krajcik, J. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632–654. https://doi.org/10.1002/tea.20311
Schwarz, C. V, & White, B. Y. (2005). Metamodeling Knowledge: Developing Students' Understanding of Scientific Modeling. Cognition and Instruction, 23((2)), 165. https://doi.org/10.1207/s1532690xci2302_1
Sins, P. H. M., Savelsbergh, E. R., van Joolingen, W. R., & van Hout‐Wolters, B. H. A. M. (2009). The Relation between Students’ Epistemological Understanding of Computer Models and their Cognitive Processing on a Modelling Task. International Journal of Science Education, 31(9), 1205–1229. https://doi.org/10.1080/09500690802192181
Sjøberg, M., Furberg, A., & Knain, E. (2023). Undergraduate biology students’ model-based reasoning in the laboratory: Exploring the role of drawings, talk, and gestures. Science Education, 107(1), 124-148. https://doi.org/https://doi.org/10.1002/sce.21765
Sun, D., Looi, C.-K., & Wenting, X. (2014). Collaborative Inquiry with a Web-Based Science Learning Environment: When Teachers Enact It Differently. Educational Technology & Society, 14, 390-403.
Treagust, D. F., Chittleborough, G., & Mamiala, T. L. (2002). Students’ understanding of the role of scientific models in learning science. International Journal of Science Education, 24(4), 357-368. https://doi.org/10.1080/09500690110066485
Tytler, R., Prain, V., Aranda, G., Ferguson, J., & Gorur, R. (2020). Drawing to reason and learn in science. Journal of Research in Science Teaching, 57(2), 209-231. https://doi.org/https://doi.org/10.1002/tea.21590
Wade-Jaimes, K., Demir, K., & Qureshi, A. (2018). Modeling strategies enhanced by metacognitive tools in high school physics to support student conceptual trajectories and understanding of electricity. Science Education, 102(4), 711–743. https://doi.org/10.1002/sce.21444
Xiang, L., & Passmore, C. (2015). A Framework for Model-Based Inquiry Through Agent-Based Programming. Journal of Science Education and Technology, 24(2), 311-329. https://doi.org/10.1007/s10956-014-9534-4