بررسی ساختار بُعدی-عاملی توانایی‌های شناختی دانش‌آموزان پایه نهم تحصیلی

نوع مقاله: مقاله علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری روانشناسی تربیتی، دانشگاه شهید چمران اهواز

2 استاد گروه روانشناسی تربیتی، دانشگاه شهید چمران اهواز

3 استادیار گروه روانشناسی تربیتی، دانشگاه شهید چمران اهواز

4 دانشیار گروه روانشناسی تربیتی، دانشگاه شهید چمران اهواز

10.22084/j.psychogy.2019.17145.1823

چکیده

هدف: بررسی ساختار بُعدی-عاملی توانایی­های شناختی، به‌دلیل این­که شواهدی درباره روایی ساختار آن از جنبه­های محتوایی و فرآیند­های شناختی ارائه می­کند، موضوعی مهم برای سنجش، مداخله و رشد این توانایی­ها می­باشد. این پژوهش با هدف بررسی ساختار بُعدی-عاملی توانایی­های شناختی و ارائه مدلی برای این ساختار، در مقایسه با ساختارهای ارائه شده از توانایی­های شناختی مانند نظریّه هوش عمومی (عامل g)، انجام گرفت.
روش: روش پژوهش توصیفی-تحلیلی و از نوع مدل­سازی رابطه بین سؤال­ها و پاسخ­ها بود. حجم نمونه پژوهش مشتمل بر 1105 دانش­آموز پایه نهم تحصیلی بود (578 پسر و 527 دختر) که به روش نمونه­گیری تصادفی طبقه­ای نسبتی از بین 32 دبیرستان شهر اهواز انتخاب شده بودند. تحلیل داده­ها با استفاده روش­های تحلیل خوشه­ای سلسله‌مراتبی مبتنی بر مجاورت کوواریانس شرطی (HAC/CCPROX) و شاخص PolyDETECT، مدل­سازی معادلات ساختاری (SEM)  و شبیه­سازی مونته­کارلو (Monte Carlo simulation) انجام گرفت.
یافته­ها: نتایج تحلیل­ها نشان داد ساختار توانایی­های شناختی دانش­آموزان دوبُعدی می­باشد. بُعد اول شناخت غیراجتماعی نام­گذاری شد که شامل شش عامل حافظه گذشته­نگر، حافظه آینده­نگر، کنترل­مهاری، تصمیم­گیری، برنامه­ریزی و توجّه­پایدار بود. بُعد دوم شناخت اجتماعی نام­گذاری شد که صرفاً شامل عامل شناخت اجتماعی بود. همچنین روایی و پایایی ابعاد و عامل­های به‌دست‌آمده مورد تأیید قرار گرفت.
نتیجه­گیری: نتایج مطالعه حاضر نشان داد نظریّه تک­بُعدی هوش عمومی (عامل g)، نظریّه­ای کامل برای ساختار توانایی­های شناختی نمی‌باشد و عامل g قادر نیست واریانس شناخت اجتماعی را تبیین کند. به همین دلیل، نظریّه برآمده از این پژوهش، «نظریّه دوبُعدی توانایی­های شناختی اجتماعی-غیراجتماعی» نامیده شد. همچنین، نتایج این پژوهش یافته­های برخی پژوهش­ها مبنی بر این­که شناخت غیراجتماعی و شناخت اجتماعی دو بُعد متفاوت توانایی­های شناختی را تشکیل می­دهند، تأیید کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the Dimensional-Factorial Structure of Cognitive Abilities of the 9th Grade Students

نویسندگان [English]

  • Mohsen Yazdanfar 1
  • Manijeh Shehni Yailagh 2
  • Ali Reza Haji Yakhchali 3
  • Sirous Alipour Birigani 4
1 Ph.D student in Educational Psychology, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
2 Professor in Educational Psychology, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
3 Assistant Professor in Educational Psychology, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
4 Associate Professor in Educational Psychology, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
چکیده [English]

Objective: Investigating the dimensional-factorial structure of cognitive abilities is an important issue for measuring, interfering and developing these abilities as evidence of its structure's validity from the aspects of content and cognitive processes. This research was conducted with the aim of investigating the dimensional-factorial structure of cognitive abilities and providing a model for this structure in comparison with the presented structures of cognitive abilities such as general intelligence theory (factor g).
Method: The research method was descriptive-analytic and modeling the relationship between items and responses. The sample size of the study consisted of 1105 ninth grade students (578 boys and 527 girls) selected by stratified random sampling from among 32 high schools in Ahwaz. Data analysis was performed using cluster analysis methods based on the conditional covariance proximity (HAC/CCPROX) and PolyDETECT, Structural Equation Modeling (SEM) and Monte Carlo simulation.
Results: The results of the analysis showed that the structure of cognitive abilities of students is two-dimensional. The first dimension was named non-social cognition and includes six factors namely retrospective memory, prospective memory, inhibitory control, decision-making, planning, and sustain attention. The second dimension was called social cognition, which included only social cognition factor. Also, the validity and reliability of the dimensions and the obtained factors were confirmed.
Discussion and Conclusion: The results of this study showed that the unidimensional theory of general intelligence (factor g) is not a complete theory for the structure of cognitive abilities and the factor g can not explain the variance of social cognition. Thus, the theory underlying the present study was called "Thetwo dimensionaltheory of social-nonsocialcognitive abilities". Also, the results of this study confirmed the findings of some studies that non-social cognition and social cognition form two different dimensions of cognitive abilities.

کلیدواژه‌ها [English]

  • The two dimensional theory of social-nonsocial cognitive abilities
  • Two-dimensional scale of social-nonsocial cognitive abilities
  • dimensionality
  • mathematical performance
  • hierarchical cluster analysis
  • Monte Carlo simulation
  • PolyDetect index
صفرخانی، مریم و کیامنش، علیرضا. (1394). «بررسی روند عملکرد ریاضی دانش­آموزان پایه هشتم در فاصله زمانی معادل 1390-1374».  فصلنامه اندازه­گیری تربیتی، 19(5)، 1-24.

نجاتی، وحید. (1392). «پرسش­نامه توانایی­های شناختی: طراحی و بررسی خصوصیات روان­سنجی». فصلنامه تازه­های علوم شناختی، 15(2)، 11-19.

Alloway, T. P., & Passolunghi, M. C. (2011). “The relationship between working memory, IQ, and mathematical skills in children”. Learning and Individual Differences, 21, 133-137.

Ashkenazi, S., Rosenberg-Lee, M., Metcalfe, A. W. S., Swigart, A. G., & Menon, V. (2013). “Visual-spatial working memory is an important source of domain-general vulnerability in the development of arithmetic cognition”. Neuropsychologia, 51, 2305-2317.

Balkemore, S. J., & Mills, K. L. (2014). “Is adolescence a sensitive period for sociocultural processing?”. Annual Review of Psychology, 65, 187-207.

Bickley, P. G., Keith, T. Z., & Wolfle, L. M. (1995). “The three-stratum theory of cognitive abilities: Test of the structure of intelligence across the life span”. Intelligence, 20, 309-328.

Bonifay, W. E., Reise, S. P., Scheines, R., & Meijer, R. R. (2015). “When are multidimensional data unidimensional enough for structural equation modeling?  An evaluation of the DETECT multidimensionality index”. Structural Equation Modeling, 22, 504-516.

Bulut, O., & Sunbul. O. (2017). “Monte carlo simulation studies in item response theory with the R programming language”. Measurement and Evaluation in Education and Psychology, 8(3), 266-287.

Carroll, J. B. (1992). “Cognitive abilities: The state of the art”. Psychological Science, 3, 266-270.

Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies. Cambridge,UK: Cambridge University Press.

Chen, W. H., & Thissen, D. (1997). “Local dependence indices for item pairs using item response theory”. Journal of Educational and Behavioral Statistics, 22, 265-289.

Cheng, Y. L. (2016). The dimensionality of cognitive structure: A MIRT approach and the use of subscores. (Doctoral dissertation), Michigan State University. Retrieved from https://etd.lib.msu.edu/.

Creswell, J. W. (2012). Educational research: Planning, conducting, and evaluating quantitative and qualitative research (4th. ed.). New York: Edwards Brothers, Inc.

Eysenck, M. W. & Keane, M. T. (2010). Cognitive psychology : A student’s handbook (4th. ed.). USA and Canada: Psychology Press.

Gaemmerer, J. M., Maddocks, D. L. S., Keith, T. S., & Reynolds, M. R. (2018). “Effects of cognitive abilities on child and youth academic achievement: Evidence from the WISC-V and WIAT-III”. Intelligence, 68, 6-20.

Gottfredson, L. S. (1997). “Mainstream science on intelligence: An editorial with 52 signatories, history, and bibliography”. Intelligence, 24, 13-23.

Horn, J. L., & Cattell, R. B. (1966). “Refinement and test of the theory of fluid and crystallized general intelligence”. Journal of Educational Psychology, 57, 253-270.

Horn, J. L. (1991). Measurement of intellectual capabilities: A review of theory. In K. S. McGrew, J. K. Werder, & R.W. Woodcock (Eds.), WJ-R technical manuul. Allen, TX: DLM.

Ismatullina, V., & Voronin, I. (2017). “Individual differences in the relationship between temperament and planning ability in adolescents”. Procedia -Social and Behavioral Sciences, 237, 1455-1461.

Ispas, D., & Borman, W. C. (2015). “Personnel selection, psychology of”. International Encyclopedia of the Social & Behavioral Sciences, 936-940. Retrieved from doi:10.1016/b978-0-08-097086-8.22014-x.

Kerlizer, J. H., & Keith, T. Z. (1999). “Independent confirmatory factor analysis of the cognitive assessment system (CAS): What does the CAS measure?”. School Psychology Review, 28(1), 117-144.

Kihlstrom, J. F. (2010). “Social neuroscience: The footprints of  Phineas”. Social Cognition, 28(6), 757-783.

Madrigal, R. (2008). “Hot vs. cold cognitions and consumers' reactions to sporting event outcomes”. Consumer Psychology, 18(4), 304-319.

Naglieri, J. A., & Otero, T. M. (2018). Redefining intelligence with the planning, attention, simultaneous, and successive theory of neurocognitive processes. In D. P. Flanagan  & E. M., McDonough (Eds.), Contemporary intellectual assessment theories, tests, and issues (4th. ed.). New York: The Guilford Press.

Nishanimut, S. P., & Padakannaya, P. (2014). “Cognitive Assessment System (CAS): A review”. Psychol Stud. Retrieved from doi: 10.1007/s12646-014-0253-y.

Osburn, H. K., & Mumford, M. D. (2006). “Creativity and planning: Training interventions to develop creative problem-solving skills”. Creativity Research Journal, 18, 173-190.

Pino Escobar, G., Kalashnikova, M., & Escudero, P. (2018). “Vocabulary matters! The relationship between verbal fluency and measures of inhibitory control in monolingual and bilingual children”. Journal of Experimental Child Psychology, 170, 177-189.

Reckase, M. D. (2009). Multidimensional item response theory. New York, NY: Springer.

Reynolds, M. R., & Keith, T. S. (2017). “Multi-group and hierarchical confirmatory factor analysis of the Wechsler Intelligence Scale for Children-Fifth Edition: What does it measure?”. Intelligence, 62, 31-47.

Roussos, L., Stout, W., & Marden, J. (1998). “Using new proximity measures with hierarchical cluster analysis to detect multidimensionality”. Journal of Educational Measurement, 35, 1-30.

Schneider, W. J., & McGrew, K. S. (2018). The Cattell–Horn–Carroll theory of cognitive abilities. In D. P. Flanagan & E. M., McDonough (Eds.), Contemporary intellectual assessment theories, tests, and issues (4th. ed.). New York: The Guilford Press.

Simmons, F. R., Willis C., & Adams A. M. (2012). “Different components of working memory have different relationships with different mathematical skills. Journal of Experimental Child Psychology, 111, 139-155.

Stout, W. F. (1990). “A new item response theory modeling approach with applications to unidimensional assessment and ability estimation”. Psychometrika, 55, 293-326.

Van Abswoude, A. A. H., Van der Ark, L. A., & Sijtsma, K. (2004). “A comparative study on test dimensionality assessment procedures under nonparametric IRT models”. Applied Psychological Measurement, 28, 3-24.

Zhang, J., & Stout, W. (1999). “The theoretical DETECT index of dimensionality and its application to approximate simple structure”. Psychometrika, 64, 213-249.

Zhang, J. (2007). “Conditional covariance theory and DETECT for polytomous items”. Psychometrika, 72, 69-91.

Zhang, J. (2013). “A procedure for dimensionality analyses of response data from various test designs”. Psychometrika, 78, 37-58.