Application of Cognitive Diagnostic Model in Determining the Underlying Cognitive Skills of Performance in Ryon Progressive Matrix Test

Document Type : Research Article

Authors

1 Master of Measurement

2 Associate Professor, Department of Measurement, Allameh Tabatabai University, Tehran, Iran

3 PhD Student in Measurement, Allameh Tabatabai University, Tehran, Iran

Abstract

Objective: The aim of this study was to determine the basic cognitive skills required to answer the questions of the Ryon IQ test and to identify the strengths and weaknesses of ninth grade students in this skill using cognitive diagnostic assessment models.
Method: The present study is a descriptive research in terms of the type of data
collected and an applied research in terms of purpose. The statistical population of this study was all ninth grade students of public schools in Tehran in the academic year of 1994-95. Among the nineteen education districts, 700 male and female students were selected through cluster random sampling. First, with the help of experts in the field of intelligence, a Q matrix was formed which included the relationships between 8 basic skills and 60 Ryonn test questions and was analyzed using the non-compensatory DINA model with the help of CDM package in R software environment. Then, in order to determine the probability of the subjects' mastery in each of the skills by determining the cut-off point of 0.7 for the mastery limit, using the expected posterior method in the framework of the DINA model, the subjects in each of the skills were divided into two Dominant and non-dominant group.
Results: The results of cognitive diagnostic assessment showed that the highest probability of mastery was related to stability and progress skills and in general, the subjects' status in all skills except two skills of thought mastery and quantitative reasoning was evaluated as desirable.
Conclusion: Considering the unfavorable situation of the subjects in the two skills of quantitative reasoning and mastery of thought over other skills, it can be concluded that students are weak in producing fast and fluid ideas and discovering mathematical relationships; Therefore, it is suggested that schools pay more attention to fostering students' creativity and assign them tasks that require brainstorming.

Keywords

Main Subjects


اشمن، آدریان. اف و کانوی، روبرت. ان. اف. (1384). مقدمه‌ای بر آموزش‌وپرورش شناختی، نظریه و کاربرد. ترجمه سید کمال خرازی. تهران: سنا.
استرنبرگ، رابرت. (1387). روانشناسی شناختی. ترجمه سیدکمال خرازی، الهه حجازی. تهران: سمت.
امیرتیموری، محمدحسن. (1382). «نظریه هوش‌های چندگانه و برنامه درسی». تعلیم و تربیت، 76، 33-66.
مارنات، گری گراث. (1391). راهنمای سنجش روانی (جلد اول). ترجمه حسن پاشا شریفی و محمدرضا نیکخو(چاپ ششم). تهران: رشد.
محسن­پور، مریم. (1393). طراحی و ساخت آزمون شناختی- تشخیصی سواد ریاضی کاربردی دانش‌آموزان سال اول دبیرستان و سنجش اثربخشی بسته آموزشی جبرانی مبتنی بر آن. پایان‌نامه دکتری: دانشگاه تهران.
مینایی، اصغر. (1391). مدل پردازی تشخیصی شناختی ((CDM سؤال‌های ریاضیات تیمز 2007 در دانش‌آموزان پایه هشتم ایران با استفاده از مدل یکپارچه با پارامتر پردازی مجدد (RUM) و مقایسه مهارت‌های ریاضی دانش‌آموزان دختر و پسر (رساله دکتری سنجش و اندازه‌گیری). دانشکده روانشناسی و علوم تربیتی. دانشگاه علامه طباطبائی.
Armstrong, M. (2011). Armstrong's handbook of strategic human resource management. Kogan Page Publishers.
Chen, C. M. C. (2013). Examining Uncertainty and Misspecification of Attributes in Cognitive Diagnostic Models (Doctoral dissertation, Columbia University).
DeCarlo, L. T. (2011). “On the analysis of fraction subtraction data: The DINA model, classification, latent class sizes, and the Q-matrix”. Applied Psychological Measurement, 35(1), 8-26.‏
Gierl, M. J., Wang, C., Zhou, J. (2008). “Using the Attribute Hierarchy Method to Make Diagnostic Inferences about Examinees' Cognitive Skills in Algebra on the SAT”. Journal of Technology, Learning, and Assessment, 6(6), n6.‏
Henson, R., Douglas, J. (2005). “Test construction for cognitive diagnosis”. Applied Psychological Measurement, 29(4), 262-277.
Huo, Y., de la Torre, J. (2014). “Estimating a cognitive diagnostic model for multiple strategies via the EM algorithm”. Applied Psychological Measurement38(6), 464-485.
Jang, E. E. (2008). “A framework for cognitive diagnostic assessment”. Towards adaptive CALL: Natural language processing for diagnostic language assessment, 117-131.
Jang, E. E., Dunlop, M., Park, G., van der Boom, E. H. (2015). “How do young students with different profiles of reading skill mastery, perceived ability, and goal orientation respond to holistic diagnostic feedback?”, Language Testing32(3), 359-383.
Kunina-Habenicht, O., Rupp, A. A., Wilhelm, O. (2009). “A practical illustration of multidimensional diagnostic skills profiling: Comparing results from confirmatory factor analysis and diagnostic classification models”. Studies in Educational Evaluation, 35(2), 64-70.‏
McGlohen, M. K. (2004). The application of cognitive diagnosis and computerized adaptive testing to a large-scale assessment (Doctoral dissertation).
Roussos, L. A., Templin, J. L., Henson, R. A. (2007). “Skills diagnosis using IRT‐based latent class models”. Journal of Educational Measurement44(4), 293-311.
Rupp, A., A., Templin, J., Henson, R., A. (2010). Diagnostics measurement. USA: Guilford Press.
Templin, J. L., Ivie, J. L. (2006, April). Analysis of the Raven’s Progressive Matrices (RPM) scale using skills assessment. In annual meeting of the National Council on Measurement in Education (NCME), San Francisco, CA.‏