The effect of transcranial direct current stimulation of the visual cortex on spatial and timing errors of tapping movements in the classical Ebbinghaus illusion

Document Type : Research Article

Authors

1 Master's degree, Motor Behavior and Sport Psychology, Faculty of Sport Sciences, Shahid Chamran University, Ahvaz, Iran

2 Assistant Professor, Department of Motor Behavior and Sport Psychology, Faculty of Sport Sciences, Shahid Chamran University, Ahvaz, Iran

3 Assistant Professor, Associate Professor, Department of Motor Behavior and Sport Psychology, Faculty of Sport Sciences, Shahid Chamran University, Ahvaz, Iran

10.22084/j.psychogy.2025.30192.2748

Abstract

Objective Human visual size perception is not always a faithful representation of the physical environment, but is heavily dependent on the surrounding context. The aim of the present study was to investigate the effect of transcranial direct current stimulation of the visual cortex on spatial errors and timing of tapping movements in the classical Ebbinghaus illusion.
Methods: The present study was quasi-experimental and fundamental in its purpose. Thirty-two university students aged 18 to 28 voluntarily participated in the study (real, 16 and sham, 16). In the pre-test, participants performed a dual-target tapping task in four different Ebbinghaus illusion conditions. These conditions included two temporal rhythms and two movement directions (horizontal and vertical). Timing error and spatial error were measured. Then, for four consecutive days, transcranial direct current stimulation was applied to the primary visual cortex (V1) in the real group and sham stimulation was applied in the sham group. One day after the last stimulation session, a post-test was performed, and three days later, a follow-up test similar to the pre-test was performed. Friedman and Wilcoxon statistical methods were used at a significance level of 0.05.
Results: The results showed that when performing movement in the Ebbinghaus illusion condition, spatial and timing errors did not differ in the horizontal and vertical conditions. Applying tDCS reduced the timing and spatial error in performing the rhythmic tapping task with the Ebbinghaus illusion context (p<0.05).
Conclusion: Considering the effect of the Ebbinghaus visual illusion on spatial and temporal errors of continuous movement, the hypothesis of separation of the two visual-cognitive and motor streams is questioned. Also, considering the effect of anodal tDCS on the V1 area and the reduction of spatial and temporal errors in the performance of motor tasks, it is suggested to use this method in tasks that require the use of visual accuracy

Keywords

Main Subjects


Abbruzzese, G., Assini, A., Buccolieri, A., Schieppati, M., & Trompetto, C. (1999). Comparison of intracortical inhibition and facilitation in distal and proximal arm muscles in humans. The Journal of physiology, 514(Pt 3)(Pt 3), 895-903. https://doi.org/10.1111/j.1469-7793.1999.895ad.x
Abuleil, D., McCulloch, D., & Thompson, B. (2021). Visual cortex cTBS increases mixed percept duration while a-tDCS has no effect on binocular rivalry. PLoS One, 16(2), e0239349.‏ https://doi.org/10.1371/journal.pone.0239349
Ahn, J., Ryu, J., Lee, S., Lee, C., Im, C. H., & Lee, S. H. (2023). Transcranial direct current stimulation elevates the baseline activity while sharpening the spatial tuning of the human visual cortex. Brain stimulation16(4), 1154-1164. https://doi.org/10.1016/j.brs.2023.07.052
Antal, A., Kincses, T. Z., Nitsche, M. A., & Paulus, W. (2003). Manipulation of phosphene thresholds by transcranial direct current stimulation in man. Experimental brain research, 150(3), 375-378. https://doi.org/10.1007/s00221-003-1459-8
Antal, A., Kincses, T. Z., Nitsche, M. A., & Paulus, W. (2003). Modulation of moving phosphene thresholds by transcranial direct current stimulation of V1 in human. Neuropsychologia, 41(13), 1802-1807. https://doi.org/10.1016/s0028-3932(03)00181-7
Antal, A., Nitsche, M. A., & Paulus, W. (2001). External modulation of visual perception in humans. Neuroreport, 12(16), 3553-3555. https://doi.org/10.1097/00001756-200111160-00036
Antal, A., Nitsche, M. A., & Paulus, W. (2006). Transcranial direct current stimulation and the visual cortex. Brain research bulletin, 68(6), 459-463. https://doi.org/10.1016/j.brainresbull.2005.10.006
Antal, A., Nitsche, M. A., Kruse, W., Kincses, T. Z., Hoffmann, K. P., & Paulus, W. (2004). Direct current stimulation over V5 enhances visuomotor coordination by improving motion perception in humans. Journal of cognitive neuroscience, 16(4), 521-527. https://doi.org/10.1162/089892904323057263
Au, J., Katz, B., Buschkuehl, M., Bunarjo, K., Senger, T., Zabel, C., Jaeggi, S. M., & Jonides, J. (2016). Enhancing Working Memory Training with Transcranial Direct Current Stimulation. Journal of cognitive neuroscience, 28(9), 1419-1432. https://doi.org/10.1162/jocn_a_00979
Bahmani, M., Wulf, G., Ghadiri, F., Karimi, S., & Lewthwaite, R. (2017). Enhancing performance expectancies through visual illusions facilitates motor learning in children. Human movement science, 55, 1-7. https://doi.org/10.1016/j.humov.2017.07.001
Behrens, J. R., Kraft, A., Irlbacher, K., Gerhardt, H., Olma, M. C., & Brandt, S. A. (2017). Long-lasting enhancement of visual perception with repetitive noninvasive transcranial direct current stimulation. Frontiers in Cellular Neuroscience, 11, 238. https://doi.org/10.3389/fncel.2017.00238
Birlik, M., Akar, S., Onen, F., Ozcan, M. A., Bacakoglu, A., Ozkal, S., ... & Akkoc, N. (2004). Articular, B-cell, non-Hodgkin’s lymphoma mimicking rheumatoid arthritis: synovial involvement in a small hand joint. Rheumatology international, 24, 169-172.‏ https://doi.org/10.1007/s00296-003-0373-5
Bocci, T., Nasini, F., Caleo, M., Restani, L., Barloscio, D., Ardolino, G., ... & Sartucci, F. (2018). Unilateral application of cathodal tDCS reduces transcallosal inhibition and improves visual acuity in amblyopic patients. Frontiers in Behavioral Neuroscience, 12, 109. https://doi.org/10.3389/fnbeh.2018.00109
Bosking, W. H., Beauchamp, M. S., & Yoshor, D. (2017). Electrical Stimulation of Visual Cortex: Relevance for the Development of Visual Cortical Prosthetics. Annual review of vision science, 3, 141-166. https://doi.org/10.1146/annurev-vision-111815-114525
Brunoni, A. R., Amadera, J., Berbel, B., Volz, M. S., Rizzerio, B. G., & Fregni, F. (2011). A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. International Journal of Neuropsychopharmacology, 14(8), 1133-1145. https://doi.org/10.1017/S1461145710001690
Cacciamani, L., Tomer, D., Mylod-Vargas, M. G., Selcov, A., Peterson, G. A., Oseguera, C. I., & Barbieux, A. (2024). HD-tDCS to the lateral occipital complex improves haptic object recognition. Experimental Brain Research, 242(9), 2113-2124.‏ https://doi.org/10.1007/s00221-024-06888-7
Cañal-Bruland, R., van der Meer, Y., & Moerman, J. (2016). Can visual illusions be used to facilitate sport skill learning?. Journal of motor behavior, 48(5), 285-389. https://doi.org/10.1080/00222895.2015.1113916
Danion, F. R., Mathew, J., Gouirand, N., & Brenner, E. (2021). More precise tracking of horizontal than vertical target motion with both the eyes and hand. Cortex; a journal devoted to the study of the nervous system and behavior, 134, 30-42. https://doi.org/10.1016/j.cortex.2020.10.001
Doustan, M. R., Farzad, L., & Saemi, E. (2018). The Effect of Handedness and Manipulation of the Index of Difficulty on the Behavioral and Neural Components of Speed-Accuracy Trade Off. Motor Behavior, 10(34), 121-150.‏
Erfani Nasab, M., Faramarzi, S., & Sharifi, A. (2024). The Effectiveness of Transcranial Direct Current Stimulation along with Computerized Cognitive Training on the Executive Functions and Academic Performance of Students with Specific Learning Disorder comorbid with Attention Deficit Hyperactivity Disorder. Cognit Strateg Learn, 12(23), 19-41. https://doi.org/10.22084/j.psychogy.2024.28580.2644
Fallah, M., Doustan, M., & Shetab Bousheri, N. (2019). The Effect of Time Limitation and Level of Movement on the Spatial Accu-racy of the Speed-Precision of Fits Task while Moving with Distal and Proximal Parts of the Hand. Neuropsychology, 4(15), 89-106.‏
Filmer, H. L., Mattingley, J. B., & Dux, P. E. (2013). Improved multitasking following prefrontal tDCS. Cortex, 49(10), 2845-2852. https://doi.org/10.1016/j.cortex.2013.08.015
Gálvez, V., Alonzo, A., Martin, D., & Loo, C. K. (2013). Transcranial direct current stimulation treatment protocols: should stimulus intensity be constant or incremental over multiple sessions?. International Journal of Neuropsychopharmacology, 16(1), 13-21. https://doi.org/10.1017/S1461145712000041
Gholami, S., Shetab Boushehri, S. N., & Doustan, M. R. (2020). The Investigate the Components of Visual Tracking and the Amount of Spatial and Temporal Error in the Bilateral Targeting Task with Dominant and Non-Dominant Hands. Motor Behavior, 12(42), 131-160.‏
Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in neurosciences, 15(1), 20-25. https://doi.org/10.1016/0166-2236(92)90344-8
Gülmez, M., Ural Fatihoğlu, Ö., & Tekçe, A. (2022). Comparison of visual outcomes between 120-µm and 140-µm cap thicknesses 12 months after small incision lenticule extraction. Lasers in Medical Science, 37(6), 2667-2673.‏ https://doi.org/10.1007/s10103-022-03534-y
Hafezi, S., Doustan, M., & Saemi, E. (2024). The effect of brain anodal and cathodal transcranial direct current stimulation on psychological refractory period at different stimulus-onset asynchrony in non-fatigue and mental fatigue conditions. Brain sciences, 14(5), 477.‏ https://doi.org/10.3390/brainsci14050477
Hafezi, S., Doustan, M., Saemi, E. & Strobach, H.T. (2024). The Effect of Two Methods of Transcranial Direct  Current  Stimulation  (tDCS)  and  Stimulus-Response  Asynchrony  on  Backward-Compatibility  Effect  in Mental Fatigue Conditions. Journal of Sports and Motor Development and Learning, 16 (1), 69-89. https://doi.org/10.22059/jsmdl.2023.361794.1744
Hasan, H. A., Enns, J. T., & Whitwell, R. L. (2023). The simultaneous tilt illusion reveals separate yet interacting visual systems for perception and action. Journal of Vision, 23(9), 4697-4697. https://doi.org/10.1167/jov.23.9.4697
Hinder, M. R., Riek, S., Tresilian, J. R., de Rugy, A., & Carson, R. G. (2010). Real-time error detection but not error correction drives automatic visuomotor adaptation. Experimental brain research, 201, 191-207.‏ https://doi.org/10.1007/s00221-009-2025-9
Itaguchi, Y., & Fukuzawa, K. (2018). Influence of speed and accuracy constraints on motor learning for a trajectory-based movement. Journal of motor behavior, 50(6), 653-663. https://doi.org/10.1080/00222895.2017.1400946
Kaiser, D., & Cichy, R. M. (2018). Typical visual-field locations enhance processing in object-selective channels of human occipital cortex. Journal of Neurophysiology, 120(2), 848-853.‏ https://doi.org/10.1152/jn.00229.2018
King, D. J., Hodgekins, J., Chouinard, P. A., Chouinard, V. A., & Sperandio, I. (2017). A review of abnormalities in the perception of visual illusions in schizophrenia. Psychonomic bulletin & review, 24(3), 734-751. https://doi.org/10.3758/s13423-016-1168-5
Kirsch, W., & Kunde, W. (2021). On the origin of the Ebbinghaus illusion: The role of figural extent and spatial frequency of stimuli. Vision research, 188, 193-201. https://doi.org/10.1016/j.visres.2021.07.016
Knol, H., Huys, R., Sarrazin, J. C., & Jirsa, V. K. (2015). Quantifying the Ebbinghaus figure effect: target size, context size, and target-context distance determine the presence and direction of the illusion. Frontiers in psychology, 6, 1679. https://doi.org/10.3389/fpsyg.2015.01679.
Kouti, E., & Shahsavarani, A. M. (2016). The “Neuropsychological Theory of Color Vision” in action: Facilitation of dyslexia psyhconeurorehabilitation based upon psychoneuro-education. Journal of Cognitive Strategies in Learning, 3(5), 21-37.‏
Lacquaniti, F., Ferrigno, G., Pedotti, A., Soechting, J. F., & Terzuolo, C. (1987). Changes in spatial scale in drawing and handwriting: kinematic contributions by proximal and distal joints. The Journal of neuroscience: the official journal of the Society for Neuroscience, 7(3), 819-828. https://doi.org/10.1523/JNEUROSCI.07-03-00819.1987
Lang, N., Siebner, H. R., Chadaide, Z., Boros, K., Nitsche, M. A., Rothwell, J. C., Paulus, W., & Antal, A. (2007). Bidirectional modulation of primary visual cortex excitability: a combined tDCS and rTMS study. Investigative ophthalmology & visual science, 48(12), 5782-5787. https://doi.org/10.1167/iovs.07-0706
Lerner, O., Friedman, J., & Frenkel-Toledo, S. (2021). The effect of high-definition transcranial direct current stimulation intensity on motor performance in healthy adults: a randomized controlled trial. Journal of neuroengineering and rehabilitation18(1), 103. https://doi.org/10.1186/s12984-021-00899-z
Loo, C. K., Alonzo, A., Martin, D., Mitchell, P., Galvez, V., & Sachdev, P. (2012). A three-week, randomized, sham-controlled trial of transcranial direct current stimulation in depression. British Journal of Psychiatry, 200, 1-8. https://doi.org/10.1192/bjp.bp.111.097634
Lu, Y., & Chen, L. (2025). Affective content of simple geometric shapes promotes visual size perception. Biological Psychology, 195, 109006.‏ https://doi.org/10.1016/j.biopsycho.2025.109006
Meek, A. W., Greenwell, D., Poston, B., & Riley, Z. A. (2021). Anodal tDCS accelerates on-line learning of dart throwing. Neuroscience letters, 764, 136211. https://doi.org/10.1016/j.neulet.2021.136211
Milner, A. D., & Goodale, M. A. (1993). Visual pathways to perception and action. Progress in brain research, 95, 317-337. https://doi.org/10.1016/s0079-6123(08)60379-9
Mioni, G., Grondin, S., Bardi, L., & Stablum, F. (2020). Understanding time perception through non-invasive brain stimulation techniques: A review of studies. Behavioural brain research, 377, 112232.‏ https://doi.org/10.1016/j.bbr.2019.112232
Moffa, A. H., Brunoni, A. R., Fregni, F., Palm, U., Padberg, F., Blumberger, D. M., ... & Loo, C. K. (2017). Safety and acceptability of transcranial direct current stimulation for the acute treatment of major depressive episodes: Analysis of individual patient data. Journal of affective disorders, 221, 1-5. https://doi.org/10.1016/j.jad.2017.06.021
Mruczek, R. E., Blair, C. D., Strother, L., & Caplovitz, G. P. (2015). The Dynamic Ebbinghaus: motion dynamics greatly enhance the classic contextual size illusion. Frontiers in human neuroscience, 9, 77. https://doi.org/10.3389/fnhum.2015.00077
Mruczek, R. E., Fanelli, M., Kelly, S., & Caplovitz, G. P. (2022). The combination of target motion and dynamic changes in context greatly enhance visual size illusions. Frontiers in Human Neuroscience, 16, 959367.‏ https://doi.org/10.3389/fnhum.2022.959367
Nitsche, M. A., & Paulus, W. (2011). Transcranial direct current stimulation--update 2011. Restorative neurology and neuroscience, 29(6), 463-492. https://doi.org/10.3233/RNN-2011-0618
Nitsche, M. A., Cohen, L. G., Wassermann, E. M., Priori, A., Lang, N., Antal, A., Paulus, W., Hummel, F., Boggio, P. S., Fregni, F., & Pascual-Leone, A. (2008). Transcranial direct current stimulation: State of the art 2008. Brain stimulation, 1(3), 206-223. https://doi.org/10.1016/j.brs.2008.06.004
Onagawa, R., Shinya, M., Ota, K., & Kudo, K. (2019). Risk aversion in the adjustment of speed-accuracy tradeoff depending on time constraints. Scientific reports, 9(1), 11732.‏ https://doi.org/10.1038/s41598-019-48052-0
Paulus, W. (2011). Transcranial electrical stimulation (tES-tDCS; tRNS, tACS) methods. Neuropsychological rehabilitation, 21(5), 602-617. https://doi.org/10.1080/09602011.2011.557292
Polanen, V., & Davare, M. (2015). Interactions between dorsal and ventral streams for controlling skilled grasp. Neuropsychologia, 79(Pt B), 186-191. https://doi.org/10.1016/j.neuropsychologia.2015.07.010
Schmidt, R. A., & Lee, T. D. (2014). Motor learning and performance: From principles to application (5th éd.). Champaign, IL: Human Kinetics.
Shahbaz, R., Saemi, E., Doustan, M., Hogg, J. A., & Diekfuss, J. A. (2024). The effect of a visual illusion and self-controlled practice on motor learning in children at risk for developmental coordination disorder. Scientific Reports, 14(1), 12414.‏ https://doi.org/10.1038/s41598-024-63387-z
Sherman, J. A., & Chouinard, P. A. (2016). Attractive Contours of the Ebbinghaus Illusion. Perceptual and motor skills, 122(1), 88-95. https://doi.org/10.1177/0031512515626632
Silvanto, J., & Cattaneo, Z. (2017). Common framework for "virtual lesion" and state-dependent TMS: The facilitatory/suppressive range model of online TMS effects on behavior. Brain and cognition, 119, 32-38. https://doi.org/10.1016/j.bandc.2017.09.007
Takao, S., Clifford, C. W. G., & Watanabe, K. (2019). Ebbinghaus illusion depends more on the retinal than perceived size of surrounding stimuli. Vision research, 154, 80-84. https://doi.org/10.1016/j.visres.2018.10.010
Talimkhani, A., Abdollahi, I., Mohseni-Bandpei, M. A., Ehsani, F., Khalili, S., & Jaberzadeh, S. (2019). Differential Effects of Unihemispheric Concurrent Dual-Site and Conventional tDCS on Motor Learning: A Randomized, Sham-Controlled Study. Basic and clinical neuroscience, 10(1), 59-72. https://doi.org/10.32598/bcn.9.10.350
Terhune, D. B., Murray, E., Near, J., Stagg, C. J., Cowey, A., & Cohen Kadosh, R. (2015). Phosphene perception relates to visual cortex glutamate levels and covaries with atypical visuospatial awareness. Cerebral cortex, 25(11), 4341-4350.‏ https://doi.org/10.1093/cercor/bhv015
Thair, H., Holloway, A. L., Newport, R., & Smith, A. D. (2017). Transcranial direct current stimulation (tDCS): a beginner's guide for design and implementation. Frontiers in neuroscience, 11, 641. https://doi.org/10.3389/fnins.2017.00641
Trevarthen, C. B. (1968). Two mechanisms of vision in primates. Psychologische Forschung, 31(4), 299-348. https://doi.org/10.1007/BF00422717
Van Polanen, V., & Davare, M. (2015). Interactions between dorsal and ventral streams for controlling skilled grasp. Neuropsychologia, 79(Pt B), 186-191. https://doi.org/10.1016/j.neuropsychologia.2015.07.010
Wang, A., Chen, L., & Jiang, Y. (2021). Anodal Occipital Transcranial Direct Current Stimulation Enhances Perceived Visual Size Illusions. Journal of cognitive neuroscience, 33(3), 528-535. https://doi.org/10.1162/jocn_a_01664
Witt, J. K., Linkenauger, S. A., & Proffitt, D. R. (2012). Get me out of this slump! Visual illusions improve sports performance. Psychological science, 23(4), 397-399. https://doi.org/10.1177/0956797611428810
Wu, P. J., Huang, C. H., Lee, S. Y., Chang, A. Y., Wang, W. C., & Lin, C. C. K. (2024). The distinct and potentially conflicting effects of tDCS and tRNS on brain connectivity, cortical inhibition, and visuospatial memory. Frontiers in Human Neuroscience, 18, 1415904.‏ https://doi.org/10.3389/fnhum.2024.1415904
Wu, D., Zhou, Y., Lv, H., Liu, N., & Zhang, P. (2021). The initial visual performance modulates the effects of anodal transcranial direct current stimulation over the primary visual cortex on the contrast sensitivity function. Neuropsychologia, 156, 107854. https://doi.org/10.1016/j.neuropsychologia.2021.107854
Yoo, S. A., & Joo, S. J. (2023). Behavioral examination of the role of the primary visual cortex in the perceived size representation. Scientific Reports, 13(1), 21134.‏ https://doi.org/10.1038/s41598-023-48632-1
Zamani, M. H., Taheri Torbati, H. R., Saberi Kakhki, A. R., & Ghoshoni, M. (2022). The effects of two types Ebbinghaus visual illusion on changes perception of visual size and brain waves pattern in children with autism: A review of neurocognitive perspective. Advances in Cognitive Science, 23(4), 18-32.